2 research outputs found

    A modelling approach for evaluating impacts of hydropeaking in a sub-arctic river

    Get PDF
    Abstract. The release of pulses of water to increase hydroelectric power production at hydropower dams to meet daily peaks in electricity demands is called hydropeaking. Due to energy supply and demand fluctuations, the energy markets direct hydropower companies to balance load fluctuations through variations in power generation which result in flow regulation. More recently, this regulation is being carried out at shorter time intervals i.e., intra-daily and intra-hourly levels. The hydropeaking phenomenon increases drastically at shorter time intervals, severely impacting the riverine and riparian ecosystem. Social, economic, and ecological impacts arise from short-term hydropeaking. Furthermore, recreational services offered by the river are also impacted. This research develops a novel methodology for assessing these impacts in a strongly regulated sub-arctic river in Finland, i.e., Kemijoki River, Ossauskoski-Tervola reach. The methodology combines assessment of seasonal variations in sub-daily hydropeaking, two-dimensional hydrodynamic modelling, and a high-resolution land cover map developed through supervised land use classification via a machine learning algorithm. The results obtained include; the identification of a zone of influence of hydropeaking at sub-daily levels during each season, the total and class-wise area affected during each peaking event, and vulnerability zonation for water-based recreation in the river reach. The overall area of reach affected by peaking in Winter was (1.05 km2), Spring (0.96 km2), Summer (1.39 km2), and Autumn (0.66 km2). A vulnerability mapping was also carried out for the suitability of water-based recreation in the study reach. The novel methodology developed in this research which defines the vulnerable zone of hydropeaking can be used as the first step in detailed impacts assessment studies such as those for impacts on fish habitat and sediment transport processes in the river. The hydropeaking-influenced zone can be used to set thresholds for ecological flows and ramping rates downstream of power stations and opens avenues for future research, development, and policy endeavors for riparian ecosystem impact assessment and mitigation

    Climate change impact on groundwater-based livelihood in Soan River Basin of Pakistan (South Asia) based on the perception of local farmers

    No full text
    Abstract Based on the perceptions of the local farmers, this study aims to assess the effects of socioeconomic factors and climatic change on the groundwater livelihood system, with a particular focus on in situ Persian wheels/dug wells. Farmers’ perceptions of climate change and how it is affecting their way of life in the Soan River Basin have also been evaluated to determine the most appropriate adaptive interventions. Information and literature about dug wells was unavailable, which stressed the need to carry out this survey. A structured close-ended questionnaire was designed and administered with as much quantitative data as possible. Random sampling opted for a 5 km buffer zone across the Soan River and its tributaries. Union councils having more than 50% of their area lying in the buffer zone were surveyed, and data was collected. Fifty UCs fell within this criterion, and six dug wells from each Union Council were surveyed. The results of our survey collecting local farmer’s perceptions determined that about 70% of respondents agreed about climate change in the Soan Basin of Pakistan, and 62% of farmers reported that climate change severely impacted their livelihood by affecting agricultural productivity and water availability. Ninety-two percent reported summer becoming hot, 72% highlighted that winters are becoming less cold, and 96% reported that average annual rainfall has decreased compared to 10 years before. About 72% of respondents indicated that available water in their dug wells had decreased, and 80% of respondents explained that their crop yield had decreased compared to 10 years before. Sixty percent preferred drip and 35% sprinkler irrigation as efficient water management practices to cope with water shortages. Ninety-five percent of farmers were ready to use solar pumps for irrigation to tame high pumping costs. The study recommends integrating solar pumping with drip and sprinkler irrigation systems to enhance farmers’ cropped area and productivity. These vulnerable farmers can enhance their resilience and profitability by adopting high-value agriculture (tunnel farming, off-season vegetables, etc.) instead of conventional crops
    corecore